Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Natural Product Sciences ; : 152-161, 2023.
Article in English | WPRIM | ID: wpr-1002538

ABSTRACT

In this study, we have successfully established a high-performance thin-layer chromatography (HPTLC) method for the quality assessment of Actinidiae Fructus Vermicultus, known as Mokcheonryo(ja) in Korea. This is the dried vermiculate fruit of Actinidia polygama and A. kolomikta, as stipulated by the Korean Herbal Pharmacopoeia (KHP). However, the Korean herbal market often witnesses the inclusion and distribution of ‘Mihudo’, an alternative herbal product sourced from the dried fruits of A. arguta, belonging to the same botanical genus. This confluence has raised substantial apprehensions concerning the veracity of quality. In response to this concern, we have meticulously developed an HPTLC analytical methodology capable of differentiation between Mokcheonryo and Mihudo by exploiting their distinct chemical profiles. We identified umbelliferone as a key marker compound for Mokcheonryo and quantified the content of umbelliferone in each sample using a TLC scanner. Throughout this study, we confirmed distinct fingerprints for Mokcheonryo and Mihudo, providing a reliable means to differentiate between these two herbal medicines. Furthermore, the presence of umbelliferone in Mokcheonryo serves as an indicator compound for quality assessment. The proposed HPTLC method offers a practical and effective tool for ensuring the quality and authenticity of Mokcheonryo in the herbal market.

2.
Natural Product Sciences ; : 264-273, 2021.
Article in English | WPRIM | ID: wpr-918578

ABSTRACT

Simultaneous quantification of multiple marker compounds in herbal medicine by high performance liquid chromatography (HPLC) analysis is still a challenge due to the complexity in various parameters to be considered and co-existing multi-components. As a case study, a reliable HPLC method for simultaneous quantification of paeoniflorin from Paeoniae Radix and decursin from Angelicae Gigantis Radix in various commercial herbal medicine was developed based on analytical quality by design (AQbD) strategy. As a first step, risk assessment was performed to select the critical method parameters (CMPs) which were decided as organic mobile phase ratio and column oven temperature. In order to evaluate the effect of the CMPs on critical method attributes (CMAs) of peak resolution and tailing, central composite design (CCD) was employed. The final chromatographic conditions were optimized as follows: column- C 18 , 4.6 × 250 mm, 5 μm particle size; mobile phase- A: acetonitrile, B: 0.1% acetic acid water; detection wavelength- 235 nm for paeoniflorin, 325 nm for decursin; column oven temperature- 25 o C; flow rate- 1.0 mL/min; gradient mobile phase system as Time (min) : % A, 0:14, 25:14, 30:50, 60:50, 61:100, 65:100, 66:14, 75:14. The method was successfully validated according to the International Conference on Harmonization (ICH) guidelines and piloted for ten commercial herbal medicines.

3.
International Journal of Oral Biology ; : 9-15, 2017.
Article in Korean | WPRIM | ID: wpr-19899

ABSTRACT

Microglia have multiple functions in regulating homeostasis of the central nervous system. Microglia cells have been implicated as active contributors to neuron damage in neurodegenerative disorders. In this study, medicinal plant extracts (MPEs) were used to evaluate the cell-death induction effect in microglia BV-2 cells. Among 35 MPEs tested in this study, 4 MPEs showed less than a 30% cell survival after 24 hours of incubation. These were Foeniculi Fructus, Forsythiae Fructus, Zingiberis Rhizoma and Hedera Rhombea. The concentration showed that 50% cell death (IC50) occurred with 33, 83, 67 Ed highlight: Please confirm wording, and 81 µ /ml, respectively. For further study, we chose Zingiberis Rhizoma (ZR) which showed a reasonably low IC50 value and an induction of cell death in a relatively narrow range. Western blot analysis showed that ZR-treated cells showed activation of caspase-3 and cleavage of PARP Ed highlight: When an acronym is first presented it needs to be spelled out in both dose- and time-dependent manners. However, the level of Bcl-2 and Bax were not changed by ZR-treatment in BV-2 cells. These results suggest that ZR-induced apoptosis in BV-2 cells occured through caspase-3 activation. The results also suggested that ZR may be useful in developing treatments for neurodegenerative diseases.


Subject(s)
Apoptosis , Blotting, Western , Caspase 3 , Cell Death , Cell Survival , Central Nervous System , Forsythia , Hedera , Homeostasis , Inhibitory Concentration 50 , Microglia , Neurodegenerative Diseases , Neurons , Plants, Medicinal
4.
Biomolecules & Therapeutics ; : 630-637, 2016.
Article in English | WPRIM | ID: wpr-209969

ABSTRACT

The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at 100 μg/mL while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents , Blotting, Western , Camellia , Chromatography, Liquid , Ethanol , Magnetic Resonance Spectroscopy , Mistletoe , Nitric Oxide , Nitric Oxide Synthase , Plant Structures , Plants , Prostaglandin-Endoperoxide Synthases , Tandem Mass Spectrometry , Viscaceae
5.
Biomolecules & Therapeutics ; : 470-475, 2013.
Article in English | WPRIM | ID: wpr-202592

ABSTRACT

Ultraviolet (UV) radiation is a major environmental factor that leads to acute and chronic reactions in the human skin. UV exposure induces wrinkle formation, DNA damage, and generation of reactive oxygen species (ROS). Most mechanistic studies of skin physiology and pharmacology related with UV-irradiated skin have focused on proteins and their related gene expression or single- targeted small molecules. The present study identified and analyzed the alteration of skin metabolites following UVB irradiation and topical retinyl palmitate (RP, 5%) treatment in hairless mice using direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) with multivariate analysis. Under the negative ion mode, the DART ion source successfully ionized various fatty acids including palmitoleic and linolenic acid. From DART-TOF-MS fingerprints measured in positive mode, the prominent dehydrated ion peak (m/z: 369, M+H-H2O) of cholesterol was characterized in all three groups. In positive mode, the discrimination among three groups was much clearer than that in negative mode by using multivariate analysis of orthogonal partial-least squares-discriminant analysis (OPLS-DA). DART-TOF-MS can ionize various small organic molecules in living tissues and is an efficient alternative analytical tool for acquiring full chemical fingerprints from living tissues without requiring sample preparation. DART-MS measurement of skin tissue with multivariate analysis proved to be a powerful method to discriminate between experimental groups and to find biomarkers for various experiment models in skin dermatological research.


Subject(s)
Animals , Humans , Mice , alpha-Linolenic Acid , Biomarkers , Cholesterol , Dermatoglyphics , Discrimination, Psychological , DNA Damage , Fatty Acids , Gene Expression , Mass Spectrometry , Metabolome , Mice, Hairless , Multivariate Analysis , Pharmacology , Reactive Oxygen Species , Skin Physiological Phenomena , Skin
SELECTION OF CITATIONS
SEARCH DETAIL